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a b s t r a c t

Segmentation of carotid artery intima-media in longitudinal ultrasound images for measuring its thick-
ness to predict cardiovascular diseases can be simplified as detecting two nearly parallel boundaries
within a certain distance range, when plaque with irregular shapes is not considered. In this paper, we
improve the implementation of two dynamic programming (DP) based approaches to parallel boundary
detection, dual dynamic programming (DDP) and piecewise linear dual dynamic programming (PL-DDP).
Then, a novel DP based approach, dual line detection (DLD), which translates the original 2-D curve posi-
tion to a 4-D parameter space representing two line segments in a local image segment, is proposed to
solve the problem while maintaining efficiency and rotation invariance. To apply the DLD to ultrasound
intima-media segmentation, it is imbedded in a framework that employs an edge map obtained from
multiplication of the responses of two edge detectors with different scales and a coupled snake model
that simultaneously deforms the two contours for maintaining parallelism. The experimental results
on synthetic images and carotid arteries of clinical ultrasound images indicate improved performance
of the proposed DLD compared to DDP and PL-DDP, with respect to accuracy and efficiency.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Boundary detection in longitudinal ultrasound carotid artery
images has focused on automatic and accurate intima-media seg-
mentation in the far wall for measurement of the thickness, which
has been demonstrated to be an independent risk factor for cardio-
vascular disease (Bots et al., 1997; Lamont et al., 2000; O’Leary
et al., 1999; Poredos, 2004). Fig. 1 illustrates three examples in
which the intima-media complex (IMC) is a double-layered struc-
ture that features bright and dark bands enclosed by dark lumen
above and bright adventitia below, whose boundary is defined by

two parallel interfaces, the lumen-intima (LI) (upper boundary)
and the media-adventitia (MA) (lower boundary). This is not an
easy task because of the intrinsic variability of the intima-media
structure and the extrinsic interference from the ultrasound ma-
chine. For anatomical variability, the thickness range demands
consideration of all possible thicknesses while the boundary curve
complicates an analytic representation. For common artifacts gen-
erated from the ultrasound machine, the interferences can be
mainly categorized by strong noise in the lumen region and miss-
ing boundary in the intima layer (see Fig. 1). When plaque with sig-
nificant local thickening exists, the situation could become more
complex because its shape can differ greatly from the intima-med-
ia with a small thickness. Therefore, in this paper, we consider only
intima-media with two nearly parallel boundaries as most of the
previously proposed intima-media segmentation methods did
(Cheng and Jiang, 2008; Destrempes et al., 2009; Loizou et al.,
2007; Xu et al., 2012).

1.1. Previous research

There are a variety of segmentation algorithms proposed in this
field, which were recently reviewed by Molinari et al. (Molinari
et al., 2010). The employed techniques include dynamic program-
ming (DP) (Cheng and Jiang, 2008; Liang et al., 2000; Wendelhag
et al., 1997), active contour model (Cheng et al., 2002; Loizou
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et al., 2007; Xu et al., 2012), stochastic optimization. (Destrempes
et al., 2009) and spline fitting (Rocha et al., 2010, 2011), among
which the most natural algorithm regarding such tasks could be
single dynamic programming (SDP) (Liang et al., 2000), as defined
by minimizing the following cost function

CSDPðy1; y2; . . . ; yNÞ ¼ j
XN

n¼2

jyn�1 � ynj �
XN

n¼1

f ðn; ynÞ ð1Þ

where yn, n = 1, 2, . . ., N is the y-coordinate of the boundary point in
the nth column, f ðx; yÞ : X! Rþ is an edge map that has large val-
ues near the boundary, X = {(x, y)j1 6 x 6 N, 1 6 y 6M} is the image
plane of size N �M (let the origin of the coordinate system be the
top left corner), and j is a parameter that controls the smoothness
of the detected boundary. The key of DP is to write (1) in a recursion
form so that a cost map containing minimal intermediate costs can
be constructed through forward recursion, and then, the optimal
solution can be found through back tracing (Amini et al., 1990). Be-
cause the cost map has the same size of the image plane, in which
each intermediate cost is computed by considering all the costs in
the previous column, the time complexity of forward recursion is
O(NM2). The back tracing traces back from the minimal cost of the
last column to the first column in O(N) to find the optimal path.

SDP is a simple approach for detecting one side boundary; thus,
it was applied to intima-media segmentation quite early (Liang
et al., 2000; Wendelhag et al., 1997). Because the boundary of inti-
ma-media can be defined by two nearly parallel interfaces without
the presence of plaque, a more ideal approach for such a problem
could consider two boundaries simultaneously in the cost function,
which was later proposed as dual dynamic programming (DDP)
(Cheng and Jiang, 2008). The DDP has been demonstrated to be
superior to SDP by imposing a hard constraint relating to the dis-
tance range and a soft constraint relating to its variation, except
that the large computational cost requires O(NM2) even through
a fast implementation that considers only neighboring costs in
the forward recursion (Cheng and Jiang, 2008).

There has been other research conducted for similar tasks, in
which piecewise linear dual dynamic programming (PL-DDP) was
proposed for spine boundary detection (Wei et al., 2001a,b). The
PL-DDP partitions the image plane into several equal-width non-
overlapping segments, in each of which two line segments con-
trolled by their endpoints are used to approximate the local bound-
aries. Because the curve smoothness of PL-DDP is controlled by the
hard constraints of the angles between adjacent line segments, the
method benefits from having a rotation-invariant nature. However,

due to the dimension of the cost map, the solution employed in
(Wei et al., 2001a,b) has a very large computational cost, O(NM4).
Although piecewise linear approximation is not accurate for inti-
ma-media segmentation, further refinement based on an active
contour model can be applied thereafter.

Further generalization includes extending the DP based detec-
tion of two parallel boundaries to multiple paths. For example, ref-
erence (Sun and Appleton, 2005) constrained the smoothness of
the path through hard constraints that forced the path points in
adjacent columns to be within a certain range. Similar to DDP, mul-
tiple hard constraints relating to the properties between paths,
such as the order and distance as well as the heuristic constraints
that use local maxima in the edge map, were proposed to reduce
the computational cost. A specific application of this generalization
to detecting two boundaries of membrane was proposed later,
which adopted a polar transform of the original image for the fol-
lowing DP (Sun et al., 2009).

The above DP methods have two characteristics that we need to
mention here. First, except for PL-DDP, the curve smoothness is de-
fined by the vertical distance between two adjacent boundary
points (first order derivative), which is not rotation invariant. Thus,
it is possible that a slanting boundary demands a small curve
smoothness to maintain the slope of the two ends while a horizon-
tal boundary demands a large curve smoothness to overcome
noise. This leads to a complicated training procedure for choosing
the optimal parameters (Cheng and Jiang, 2008; Liang et al., 2000),
which might not be successfully applied to all the situations. Sec-
ond, because the DP searches the whole image plane to detect
the boundaries, the computational cost achieves O(NM2) for DDP
and O(NM4) for PL-DDP. We will show, in Section 2, that they could
achieve O(NM) complexity via fast implementations. However, it is
still not a trivial task when the image becomes large.

1.2. Our contribution

In this paper, we propose a novel algorithm that avoids the
above shortcomings for parallel boundary detection and validate
the method in the context of ultrasound LI and MA boundary trac-
ing. The boundary curve is divided into several parts, each of which
is approximated using a line segment that can be defined by two
parameters using a polar representation. The endpoints of the adja-
cent parts are linked via minimization of their vertical distance.
Geometric constraints such as the distance and the angle between
the two line segments are also incorporated naturally. Several

Fig. 1. Illustration of the intima-media in ultrasound carotid artery images, in which the IMC is a double-layered structure enclosed by dark lumen above and bright
adventitia below. The left column shows original ROI images while the right column shows manually delineated boundary contours.
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remarks can be made about this representation. First, in each seg-
ment, because of the polar representation of the line, the hard con-
straints can be imposed in a rotation-invariant way. Second, when
the length of a part is small enough to equal the width of a single
column, the algorithm degrades to a DP which is similar to DDP.
Third, when the length of the part is large enough to equal the
width of the image plane, the algorithm degrades to line detection
which is similar to finding peaks in the parameter space of the
Hough transform. Hence, it benefits from the robustness of both
the Hough transform and DP. Moreover, it overcomes the weakness
of the Hough transform that requires a very high dimensional
parameter space for complex curves and the inconsistent curve
smoothness measure of the above DP. Finally, because the algo-
rithm operates on the edge points instead of on the whole image
plane, apart from the thresholding procedure to determine the
edge points, the remaining part could achieve linear time complex-
ity O(N).

The remainder of this paper is organized as follows. Section 2
reviews the previous DDP and PL-DDP, for which we suggest that,
under certain hard constraints, the complexity of the solution can
be reduced to O(NM). Section 3 introduces the theoretical model
of the proposed dual line detection (DLD) for parallel boundary
detection and a fast solution that requires only O(N). Section 4
proposes a framework to imbed the DLD for ultrasound intima-
media segmentation, which includes three steps, as illustrated
in Fig. 2. Then, after a description of data acquisition and algo-
rithm implementation in Section 5, Section 6 presents and dis-
cusses comparative results on these methods. The final
Section gives conclusive remarks.

2. Dynamic programming in parallel boundary detection

The problem of parallel boundary detection, regardless of
whether it is in ultrasound intima-media segmentation or spine
boundary detection, can be defined as finding two boundaries that
have the following features:

1. The boundary of either side should be a smooth curve (intra-
curve smoothness).

2. The two side boundaries should be nearly parallel (inter-curve
smoothness) and have a distance within a specific range.

Suppose that the edge map f(x, y) is given by an edge detector;
then, the objective of parallel boundary detection becomes finding
two curves that satisfy the above two constraints while passing
through large values in f(x, y). Following this definition, two ap-
proaches, DDP and PL-DDP, which include two curves in the cost
function and solve for the optimal solution through DP, are dis-
cussed in this Section.

2.1. Dual dynamic programming

The DDP is defined by minimizing a combined cost function of
(1)

CDDPðy1; y2; . . . ; yNÞ ¼ j1

XN

n¼2

jdn�1 � dnj þ j2

XN

n¼2

kyn�1 � ynk

�
XN

n¼1

X2

i¼1

f ðn; yn;iÞ ð2Þ

Fig. 2. Overview of the proposed intima-media segmentation approach.
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subject to

dmin 6 dn 6 dmax

where yn = (yn,1, yn,2)T denotes the boundary points of LI (yn,1) and
MA (yn,2) in the nth column, k � k denotes norm of the vector (L1-
norm in (Cheng and Jiang, 2008)), dn = yn,2 � yn,1 is the distance be-
tween two boundary points which is constrained by the range [dmin,
dmax], and j1 controls the uniformity of the distance (inter-curve
smoothness) between the two boundary curves, while j2 controls
their intra-curve smoothness. The recursion form of (2) can be writ-
ten as

C0DDPðynÞ¼min
yn�1
fC0DDPðyn�1Þþj1jdn�1�dnjþj2kyn�1�ynkg�

X2

i¼1

f ðn;yn;iÞ

C0DDPðy1Þ¼�
X2

i¼1

f ð1;y1;iÞ

8>>>><
>>>>:

ð3Þ

where C0DDPðynÞ ¼miny1 ;y2 ;...;yn�1
CDDPðy1; y2; . . . ; ynÞ is the minimal

cost ending at yn, n = 2, 3, . . ., N.
The computation of C0DDPðynÞ can be constrained by dmin 6 dn

6 dmax, and the possible yn�1 for each computation can be limited
to 9 neighbors centered around yn; thus, the complexity of the for-
ward recursion can be reduced to O(NM). Fig. 3a illustrates this
process in the construction of the cost map. Note that the original
memory cost of DDP requires O(NM2) for the cost map, which
makes the method inapplicable for large images. However, if we
store only values that satisfy dmin 6 dn 6 dmax (see the shadowed
area in Fig. 3a), the memory cost can also be reduced to O(NM).

2.2. Piecewise linear dual dynamic programming

The original PL-DDP is intended to detect vertical spine bound-
aries and contains some constraints with similar smoothing effects.
Here, we modify the method for horizontal boundary detection and
keep a minimal set of hard constraints to derive a simplified ver-
sion. To be specific, we partition the edge map f(x, y) horizontally
into S equal-width non-overlapping segments {fs(x, y)js = 1, 2, . . .,
S}, where 1 6 x 6 Ns, 1 6 y 6M, approximate the local two-sided
boundaries using line segments Ls = {ls,1, ls,2}, s = 1, 2, . . ., S, which
are controlled by endpoints (y-coordinates) es�1 and es, where
es = (es,1, es,2)T, s = 0, 1, . . ., S, and find a set of line segments {Lsjs = 1,
2, . . ., S} that pass through strong edges as many as possible by
minimizing the following cost function

CPL�DDPðe0; e1; . . . ; eSÞ ¼ �
XS

s¼1

X2

i¼1

fsðls;iÞ ð4Þ

where

fsðls;iÞ ¼
XNs

n¼1

fsðn; ðn=NsÞes;i þ ð1� n=NsÞes�1;iÞ

subject to

hmin 6 hs;i 6 hmax

\ðls;1; ls;2Þ 6 x1

\ðls;i; ls�1;iÞ 6 x2

dmin 6 es;2 � es;1 6 dmax

where \(., .) denotes the angle between two line segments, hs,i is the
angle between ls,i and the horizontal axis, hmin, hmax constrain the
line segment to be within a certain orientation range, x1, x2 control
the inter-curve smoothness and intra-curve smoothness, respec-
tively, and dmin, dmax specify the range of the distance. The recursion
form of (4) can be written as

C 0PL�DDPðesÞ ¼min
es�1

C0PL�DDPðes�1Þ �
X2

i¼1

fsðls;iÞ
( )

C 0PL�DDPðe0Þ ¼ 0

8><
>: ð5Þ

where C0PL�DDPðesÞ ¼mine0 ;e1 ;...;es�1 CPL�DDPðe0; e1; . . . ; esÞ is the minimal
cost ending at es, s = 1, 2, . . ., S.

Although the forward recursion requires every es�1 for each
computation at es, the hard constraints imply that both of them
can be constrained to a certain range. First, we observe that
dmin 6 es,2 � es,1 6 dmax constrains es in a narrow band similar to
the DDP. Second, hmin 6 hs,i 6 hmax implies that Ns tan hmin 6 jes�1,

i � es,ij 6 Ns tan hmax, which can be used to constrain the possible
values of es�1 for computation. Fig. 3b illustrates these constraints
in the construction of the cost map. Note that, although the theo-
retical cost is reduced to O(NM), because the wide range of
Ns tan hmin;Ns tan hmax½ � leads to many evaluations of fs(ls,i) and cal-

culations of the orientation of the two line segments for compari-
son with x1 and x2, the actual time cost is still large.

3. Dual line detection

We reviewed two examples of parallel boundary detection, DDP
and PL-DDP, in the above Section, where two fast implementations
that exploit multiple hard constraints and reduce the computa-
tional costs to O(NM) were discussed. However, we also see that
because of their nature that relies on the whole image plane, with-
out further constraints, such a cost is a minimum requirement.
Here, we propose a novel DP that approximates the parallel

Fig. 3. The forward recursion of DDP (a) and PL-DDP (b). (a) The shadowed area indicates the constrained computation of C0DDPðynÞ via dmin 6 dn 6 dmax, which relies on 9
neighbors in the previous page. (b) Through imposing hard constraints, both in the evaluation of es (shadowed band in the sth page via dmin 6 es,2 � es,1 6 dmax) and in the
selection of es�1 (double shadowed rectangles in the (s � 1)th page via hmin 6 hs,i 6 hmax), the computational cost can be reduced to O(NM).

Y. Zhou et al. / Medical Image Analysis 17 (2013) 892–906 895
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boundaries via piecewise linear representation, which not only is
rotation invariant but also could achieve linear time complexity.

3.1. Theory

The DLD partitions the edge map horizontally into equal-width
non-overlapping segments and approximates the local boundaries
using parallel line segments. Inspired by (Toronto et al., 2007), we
adopt a Bayesian variation of the Hough transform in each segment
so that multiple lines can be extracted with shape constraints im-
posed. The Hough transform, as a special case of the Radon trans-
form (Deans, 1981), represents a line by two parameters q and h,
where q denotes the distance between the line and the origin of
the image plane and h denotes the orientation of the line so that,
given an arbitrary point (x, y) that belongs to the line, equation
(6) is satisfied (Duda and Hart, 1972).

q ¼ x cos hþ y sin h ð6Þ

Suppose that, in an edge map f(x, y),K edge points X = {(x1, y1),
(x2, y2), . . ., (xK, yK)} that have non-zero values exist. We aim to ex-
tract a set of two lines L = {l1, l2} from these edge points, where
each li can be represented by a parameter pair (qi, hi). Based on
the analysis in (Toronto et al., 2007), we define the conditional
probability density of the edge point (xk, yk) given line li, i = 1, 2 by

Pðxk; ykjliÞ / expðdðxk cos hi þ yk sin hi � qiÞÞ ð7Þ

where d(z) is a regularized Dirac delta function that is close to one
when z is close to zero and is close to zero otherwise. Note that jxk

cos hi + yk sin hi � qij is the distance between point (xk, yk) and the
line specified by (qi, hi), so the probability achieves its maximum
when the line passes through (xk, yk). This definition originates from
the assumption that the edge points are mainly generated by the
boundary (the line segment used to approximate the boundary).
Furthermore, we can also assume that the larger f(xk, yk) is, the more
likely (xk, yk) is to be an edge point, i.e., the probability in (7) can be
modified by

Pðxk; ykjf ; liÞ / expðf ðxk; ykÞdðxk cos hi þ yk sin hi � qiÞÞ ð8Þ

Since we have a set of non-overlapping line segments that
approximate boundaries, each edge point could be generated by
one line segment. The conditional probability density of the edge
point (xk, yk), given a set of two lines L, can be naturally defined by

Pðxk; ykjf ; LÞ / maxfPðxk; ykjf ; l1Þ; Pðxk; ykjf ; l2Þg ð9Þ

Considering that each edge point satisfies an independent distribu-
tion, the probability of all the edge points is the product of the inde-
pendent components.

PðXjf ; LÞ ¼
YK

k¼1

Pðxk; ykjf ; LÞ ð10Þ

The definition of parallel boundary detection implies that the
local detected line segments should be nearly parallel and their
distance satisfies a predefined range. We can assume that their an-
gle and distance satisfy Gaussian distributions and define a prior
probability of a line set by

PðLÞ ¼ Pðl1; l2Þ ¼ Pðq1; h1;q2; h2Þ ¼ Pðq1;q2ÞPðh1; h2Þ ð11Þ
Pðq1;q2Þ ¼ expð�ðq2 � q1 � gÞ2=2c2Þ
Pðh1; h2Þ ¼ expð�ðh2 � h1Þ2=2x2Þ

where g is the desired distance between two line segments, and c
specifies the variation range of the distances centered at g. The
parameter x specifies the variation range for the angle between
two line segments as approximately 0. Note that here we assume
the variables qi and hi are independent because they are two param-

eters to represent the line without correlation. Using Bayesian the-
ory, the posterior probability of the line set given the edge points
can be derived by

PðLjf ;XÞ / PðXjf ; LÞPðLÞ ð12Þ

if PðXÞ ¼
QK

k¼1Pðxk; ykÞ is a constant by assuming that the probability
of edge point P(xk, yk) satisfies a uniform distribution.

The objective of finding two parallel line segments becomes the
same as maximizing the posterior of the line set given all the edge
points in the edge map.

L� ¼ arg max
L

PðLjf ;XÞ ð13Þ

Combining Eqs. (8)–(12), maximizing P(Ljf, X) is equivalent to
maximizing

DðhÞ ¼ log PðLjf ;XÞ

¼
XK

k¼1
f ðxk; ykÞmaxfdðxk cos hi þ yk sin hi � qiÞji ¼ 1;2g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

line matching

� ðq2 � q1 � gÞ2

2c2 � ðh2 � h1Þ2

2x2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
shape constraint

ð14Þ

where h = (h1, h2, q1, q2)T specifies the two line segments. Note that
the line-matching term is similar to the accumulator array that is
constructed by using the Hough transform (suppose f(xk, yk) = 1
and i = 1; then, it degrades to the Hough transform for line detec-
tion). We refer to this problem as unconstrained dual line detection
(UDLD).

The shape constraint in (14) can be imposed on the optimiza-
tion problem as a hard constraint through assuming a uniform dis-
tribution for the line set, which transforms the objective to
maximizing

DðhÞ ¼
XK

k¼1

f ðxk; ykÞmaxfdðxk cos hi þ yk sin hi � qiÞji ¼ 1;2g ð15Þ

subject to

�x1 6 h2 � h1 6 x1

dmin 6 q2 � q1 6 dmax

We refer to the above problem as constrained dual line detection
(CDLD). Eq. (15) has an intuitive interpretation that each edge point
belonging to the line set contributes its strength to the objective
function. The Gaussian distribution Gl,r(x) has a large probability
in the interval [l � 3r, l + 3r]; thus, we can assume that the prior
probability P(L) constrains the solution of UDLD in {hjg � 3c 6 q2

� q1 6 g + 3c, �3x 6 h2 � h1 6 3x}, which makes the UDLD similar
to CDLD except for the additional term of the shape constraint.

Suppose that the partition of the edge map f(x, y) provides S
equal-width non-overlapping image segments denoted by {fs (x,
y)js = 1, 2, . . ., S} for each fs(x, y), 1 6 x 6 Ns having two line seg-
ments Ls = {ls,1, ls, 2} corresponding to the local boundaries, where
ls,i, i = 1, 2 can be represented by a parameter pair (qs,i, hs,i). The
piecewise linear approximation for two parallel boundaries can
be obtained by maximizing

Uðh1; h2; . . . ; hSÞ ¼
XS

s¼1

DsðhsÞ ð16Þ

where hs = (hs,1, hs,2, qs,1, qs,2)T and Ds is the UDLD or CDLD of fs.
Although Ds(hs) guarantees that the detected line segments are

optimal with respect to the edge points in the image segment, such
an optimization is localized and no neighboring information is
considered. Similar to DDP and PL-DDP, two neighboring
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constraints can be imposed here. First, we can assume that the
adjacent line segments belonging to the same interface have a
maximal angle, i.e., �x2 6 hs,i � hs�1,i 6x2. Second, we can ensure
that their adjacent endpoints be closely linked by minimizing a
function G(hs�1, hs) that measures the distance between the
endpoints

Gðhs�1; hsÞ ¼ kes�1;R � es;Lk ð17Þ

where es,L (es,R) are the y-coordinates of the two left (right) end-
points of the line segment pair specified by hs. The notation k � k rep-
resents any type of valid norm, and we chose the L1-norm for
simplicity.

Combining local line detection and adjacent linkage, we pro-
pose a linked dual line detection (LDLD) that makes the two line
segments in each image segment pass through the edge points as
many as possible, while linking to their respective neighbors, by
minimizing

Uðh1; h2; . . . ; hSÞ ¼ k
XS

s¼2

Gðhs�1; hsÞ �
XS

s¼1

DsðhsÞ ð18Þ

subject to

�x1 6 hs;2 � hs;1 6 x1

�x2 6 hs;i � hs�1;i 6 x2

dmin 6 qs;2 � qs;1 6 dmax

where Ds adopts the form in (15), and k is a positive that controls
how close the adjacent endpoints should be. Fig. 4 illustrates this
representation of two parallel boundaries given artificial edge
points. Eq. (18) involves 4S parameters. If each one is discretized
by H values, minimizing (18) would have H4S possible solutions.
Common optimization approaches, such as simulated annealing,
Nelder-Mead Simplex and Markov Chain Monte Carlo (Spall,
2003), might either have a slow convergence rate or be attracted
to local minima. We use a two-step algorithm to solve the problem.
The first step calculates the non-zero values Ds (hs) of the 4-D dis-
cretized parameter space for each image segment. The second step
uses DP to find {hsjs = 1, 2, . . ., S} of those non-zero values that min-
imize U(h1, h2, . . ., hS).

3.2. Solution

To solve the problem of LDLD by a 4-D DP, the focus shifts to
efficiently evaluating Ds(hs) in an image segment. Hence, we first
discuss the solution of CDLD. Given an edge map of size N �M,
according to the requirement of LDLD that the endpoints of a line
segment should lie at the left and right side boundary, Eq. (6) yields
q 2 (0, M] when h 2 [0, p). Suppose that each parameter is discret-
ized by H values; then, the 4-D parameter space {hj0 6 hi < p,

0 < qi 6M} for CDLD can be divided into H4 elements, where each
element has a uniform size and is initialized to zero.

We now focus on Eq. (15), which contributes to an element sum
of strengths of all the edge points passed through by the line set
specified by the element. For a specific point (xk, yk) and a param-
eter pair (h1, h2), Eq. (15) suggests that, only when xk cos hi + yk

sin hi � qi is near to zero, the edge strength f(xk, yk) can be added
to an element. Thus, we can solve xk cos hi + yk sin hi � qi = 0 for
qi given (xk, yk) and hi, and then, we can add f(xk, yk) to all the ele-
ments determined by (h1, h2, qi). Because the calculated qi might
not exactly correspond to a discrete value, round-off is needed in
this step. Note that either of the two conditions {xk cos hi + yk sin
hi � qi = 0ji = 1, 2} holding would be sufficient to apply the above
addition because the max{., .} operation requires only one large
d(z); thus, the computation in the parameter space (q1, q2) given
fixed (h1, h2) can be constrained into two strips that are determined
by the calculated values of q1 and q2, resulting in a computational
cost of O(KH3).

The key to our solution is to utilize the edge direction to con-
strain the selection of (h1, h2), similar to in (Ballard, 1981). For a
specific edge point (xk, yk), the edge direction h0 can be calculated
from the original image. Because the two lines to be extracted are
more likely to generate an edge point with the same direction as
one of them, the search for a maximum of (15) as well as the com-
putation of (h1, h2) can be constrained in the vicinity of this direc-
tion. Note that the edge direction can be attributed to either of the
two lines (here, we consider only the two side boundaries that
have edge directions pointing to the same side, while the algorithm
can be naturally extended to adapt to opposite sides); thus, again
the computation of (h1, h2) can be constrained into two stripsS

i=1, 2{(h1, h2)jh0 � he 6 hi 6 h0 + he}, where he is a small value that
controls the size of the vicinity. The incorporation of the edge
direction reduces the computational cost to O(KH2) for UDLD,
whose solution can be obtained by adding the shape constraint
in (14) to each of the non-zero values of (15).

Although the above solution is efficient for a 4-D optimization
problem, the hard constraints in (15) can further reduce the com-
plexity of CDLD to O(K). To understand how they work, we first ob-
serve the angle constraint �x1 6 h2 � h1 6x1, which constrains
the selection of (h1, h2) into two narrow strips of length 2x1

determined by the edge direction. Then, the distance constraint
dmin 6 q2 � q1 6 dmax further constrains the computation of (q1,
q2) into strips of length dmax � dmin determined by (h1, h2).

The above analysis is illustrated in Fig. 5, where the 4-D param-
eter space is decomposed by two 2-D spaces ((h1, h2) and (q1, q2)),
and the shadowed areas indicate the elements that are required for
the computation. Here, we give an example for an edge point with
the direction h0. The edge point could be passed through by the line
(q1, h1), which means that we need to calculate all the elements at
{(h1, h2)jh1 = h0, jh2 � h1j 6x1}, which corresponds to the horizontal
shadowed strip in Fig. 5a. For (q1, q2) given each (h1, h2) in this
strip, q1 can be determined by q1 = xk cos h1 + yk sin h1 because
we assume that the edge point is passed through by the line (q1,
h1) in the first step. Suppose that the calculated q1 equals q0; then,
given the hard constraint dmin 6 q2 � q1 6 dmax, the calculation for
(q1, q2) is constrained in the horizontal shadowed strip in Fig. 5c.
Similar explanations can be deduced for Fig. 5b and d.

Accompanying the illustration, the pseudocode for CDLD is gi-
ven in Fig. 6, where the 4-D sparse matrix can be implemented
by using data structures such as red–black tree, hash table or trie,

which contains a maximum of 8hex1ðdmax�dminÞ
Dh2Dq

elements. Note that

Figs. 5 and 6 apply to the detection of two side boundaries with
edge directions that point to the same side, e.g., both LI and MA
have edge directions that point downward. If the objective is to de-
tect boundaries with edge directions that point to opposite sides,

Fig. 4. Illustration of the proposed LDLD given a set of edge points. The line
segments are attracted by the edge points while maintaining a spring that connects
the endpoints of adjacent segments.
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then the situation becomes somewhat simpler (only one strip in
Fig. 5a) because the edge direction can help attribute the edge
point to one side boundary.

Since the above solution for CDLD provides an efficient way to
compute the non-zero values in Ds(hs), we can solve the LDLD by
selecting these values through DP. Although this approach ex-
cludes the possibility that zero values of Ds(hs) may constitute an
optimal solution, considering that such a case implies that none
of the two lines in an image segment passes through any edge
point, it is still acceptable in practical applications. Re-writing
(18) into a recursion form, the DP can be defined by

U0ðhsÞ ¼min
hs�1
fU0ðhs�1Þ þ kGðhs�1; hsÞg � DsðhsÞ

U0ðh1Þ ¼ �D1ðh1Þ

8>><
>>: ð19Þ

where U0ðhsÞ ¼minh1 ;h2 ;...;hs�1 Uðh1; h2; . . . ; hsÞ is the minimal cost end-
ing at hs, s = 2, 3, . . ., S. Because our solution has embedded the hard
constraints relating to an image segment in Ds(hs), the DP here only
needs to consider �x2 6 hs,i � hs�1,i 6x2, which is easy to calculate
due to our representation of line segments and can also reduce the
computation in some situations.

To analyze the time complexity of this solution, we can assume
that the edge map possesses K edge points, which are equally scat-
tered in each image segment. According to the above analysis of
CDLD, we need O K

S � S
� �

to build the 4-D parameter space for all
the segments. Because the add operation in each segment occurs
O K

S

� �
times, the number of non-zero elements should be less than

O K
S

� �
. Therefore, the worst case for the complexity of DP is

O K
S � K

S � ðS� 1Þ
� �

. Then, if we assume that the width of an image seg-
ment is a constant (O(S) = O(N)) and the number of edge points is
proportional to the image width (O(K) = O(N)), the cost can be sim-
plified to O(N). Note that a similar analysis and result can be
deduced for the requirement of memory.

4. Application to ultrasound intima-media segmentation

Segmentation of carotid artery intima-media in longitudinal
ultrasound images is a huge challenge in medical imaging due to
its low imaging quality. Because of the morphologic variability of
plaque, most previous research has focused on segmentation in
the carotid arteries without significant local thickening. In this pa-
per, the problem is also restricted to carotid arteries with two
nearly parallel boundaries. The application of the proposed DLD
to ultrasound intima-media segmentation requires supplements
of an edge map computation and a curve refinement. Here, we de-
fine the edge map by the product of the responses from edge detec-
tors with different scales, and deform the initial contours from the
DLD by a special snake model for accurate segmentation (see
Fig. 2).

4.1. Scale multiplication

The edge map is usually defined by the gradient magnitude of
the original image that highlights the boundary of the object to
be segmented. However, when we identify the IMC, as illustrated

Fig. 5. Illustration of our solution, which exploits the edge direction and hard constraints for CDLD. (a) is the space of (h1, h2), where the computation can be first constrained
into two strips that are crossed according to the edge direction h0 and further constrained into the shadowed area via �x1 6 h2 � h1 6x1. (b) shows that, when (h1, h2) 2 {(h1,
h2)jh2 = h0, jh2 � h1j 6x1, h2 – h1}, the computation in the space of (q1, q2) can be constrained into a strip of length dmax � dmin at q2 = q0, where q0 = xk cos h0 + yk sin h0. (c)
shows the constrained computation when (h1, h2) 2 {(h1, h2)jh1 = h0, jh2 � h1j 6x1, h2 – h1}. (d) shows that, when (h1, h2) 2 {(h1, h2)jh1 = h2 = h0}, the computation is constrained
into two strips, which means that either of the two lines can pass through this edge point since both of them match the edge direction now.
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in Fig. 1, noise in the lumen region, the intima-media interface and
the adventitia layer all create misleading edges, which would com-
promise the results of DLD and the subsequent curve evolution. To
reduce their interference, we select only positive step edges with
respect to the y-axis in the edge map by defining

f ðx; yÞ ¼max 0;
@Gr

@y
� Iðx; yÞ

� �
ð20Þ

where I(x, y) denotes the original ROI image,
Grðx; yÞ ¼ 1

2pr2 e�ðx2þy2Þ=2r2 is a 2-D Gaussian with a standard devia-
tion of r, ⁄ denotes a convolution operation and @

@y denotes the
derivative with respect to y. This definition will remove the nega-
tive edges in the intima-media, as well as those in the lumen and
adventitia layer.

The interference can be further reduced by using scale multipli-
cation that defines the edge map by the product of the responses
from two scale filters (Bao et al., 2005; Rosenfeld, 1970). The char-
acteristics of ultrasound carotid artery images suggest that a suffi-
cient coarse-scale could only keep the vessel wall while removing
other fine features such as IMC (Liang et al., 2000). Thus, if an edge
map from the coarse-scale image serves as an envelope of the fine-
scale one, the edges can be localized near the IMC and the interfer-
ence can be further reduced. Combining edge maps from different
scales, the proposed edge map is defined by

f ðx; yÞ ¼
Y2

i¼1

max 0;
@Gri

@y
� Iðx; yÞ

� �
ð21Þ

where Gr1 ðx; yÞ is a 2-D Gaussian with a small scale r1, and
Gr2 ðyÞ ¼ 1ffiffiffiffi

2p
p

r2
e�y2=2r2

2 is a 1-D Gaussian with a large scale r2 to avoid
the expensive 2-D convolution cost. The same directional edge
scheme is used in the coarse-scale image since the artery wall also
features positive step edges along the y-axis. Fig. 7 shows the ben-
efits of this type of definition for reducing noise edges in the lumen
and adventitia.

4.2. Dual line detection

Based on the edge map that was obtained from the scale multi-
plication, the proposed LDLD is applied here as an initial approxi-
mation to the boundary. Specifically, we determine the number
of image segments by S = dN/lmaxe, where lmax controls the maximal
width that a segment can achieve. Then, after independent normal-
ization to 0–1 of each image segment, it is thresholded by a global
constant e to determine the local edge points. Finally, the cost func-
tion (18) is minimized through evaluating Ds(hs) in each image seg-
ment and selecting the optimal line segments as two initial
contours for the following active contour model.

The CDLD with edge directions and a thickness range taken
from clinical images is important for this application. The key in
this step is to construct a sparse matrix and to add values to some
of its elements. We use a hash map to store its non-zero values,
where the 4-D coordinate is transformed to a large index that is
based on the size of the matrix; thus, modulo a prime can be used
as the hash function. To reduce the computation of the following
DP, a threshold tm maxDs (hs), where 0 < tm < 1, can be applied to

Fig. 6. Pseudocode of algorithm for CDLD.

Fig. 7. Edge map obtained from scale multiplication for Fig. 1a. (a) Original image.
(b) Edge map from a directional edge detector with a small scale (r1 = 1). (c) Edge
map from a directional edge detector with a large scale (r2 = 15). (d) Combination
of (b) and (c), resulting in an edge map that contains edges from the LI and MA
while being free from edges that are away from the IMC.
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eliminate its small values, which should correspond to the line sets
that pass through only a few edge points. Because the edge map
contains noise that leads to many small non-zero values in the ma-
trix, this operation could save a substantial amount of actual time
cost.

4.3. Curve evolution

The initial contours are inaccurate approximations to the de-
sired boundaries. We choose snake model for accurate segmenta-
tion (Kass et al., 1988). Given the edge map f ðx; yÞ : X! Rþ,
snake model drives a contour toward local maxima in f(x, y) by
defining a parametric curve C(q):[0, 1] ? X that locally minimizes
the energy functional

EðCÞ ¼ a
2

Z
@C
@q

����
����2

dqþ b
2

Z
@2C
@q2

�����
�����

2

dq�
Z

f ðCÞdq ð22Þ

where C(q) = (x(q),y(q)), k � k denotes the L2-norm, @C
@q and @2C

@q2 denote
the first and second derivatives of C(q) with respect to q, and x(q)
and y(q) are the x-coordinate and y-coordinate of the curve point
C(q). The parameters a and b control the weights of the curve
length and the rigidity, both of which smooth the curve. Eq. (22)
can be simplified for intima-media segmentation considering that
the boundary curve can be represented by one y-coordinate per x-
coordinate and that the first order smoothing term in (22) is suffi-
cient to regularize the functional (Caselles et al., 1997). Therefore,
we only need a miniature snake model that minimizes the following
functional

EðyÞ ¼ a
2

Z
@y
@x

	 
2

dx�
Z

f ðx; yÞdx ð23Þ

where y(x): [1, N] ? [1, M] denotes the boundary contour.
It is known that ultrasound segmentation could be hindered by

the disappearance of boundary (Noble and Boukerroui, 2006), e.g.,
previous researchers proposed to handle it through incorporating
shape priors from training data in heart and kidney segmentation
(Chen et al., 2002; Xie et al., 2005). In the context of intima-media
segmentation, the disappearance of boundary could result in two
boundary curves being attracted to the same interface because
the two side boundaries are rather close. Therefore, a shape con-
straint can be derived through reducing the distance variation be-
tween the two contours. Incorporating such a constraint into a
variational framework, the proposed IMT Snake model is defined
by minimizing

Eðy1; y2Þ ¼
1
2

X2

i¼1
ai

Z
@yi

@x

	 
2

dx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
smoothing energy

�
X2

i¼1

Z
f ðx; yiÞdx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

boundary energy

þ l
2

Z
@ðy2 � y1Þ

@x

� �2

dx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
uniform energy

ð24Þ

where y1(x) and y2(x) denote the contours for LI and MA, respec-
tively. We can see that, compared to (23), (24) added a uniform en-
ergy term that connects the independent contours together through
forcing a uniform distance via parameter l.

By gradient descent flow, minimizing (24) can be achieved by
solving the partial differential equations (PDE)

@y1

@t
¼ k1

@2y1

@x2 � l @
2y2

@x2 þ
@f
@y
ðx; y1Þ ð25Þ

@y2

@t
¼ k2

@2y2

@x2 � l @
2y1

@x2 þ
@f
@y
ðx; y2Þ ð26Þ

where ki = ai + l, i = 1, 2 with the initial contours. The effect of uni-
form energy can be intuitively interpreted by separating
l @2y1

@x2 � @2y2
@x2

 �
in (25) and considering it to be an adaptive spring that

continuously attempts to maintain a uniform distance by pulling
the curve point of the LI contour down when the distance of the cur-
rent position is larger than its neighboring distances and vice versa.
A similar interpretation for Eq. (26) can be deduced from a contrary
movement of the MA contour. For the sake of stability, the numer-
ical scheme (see the Appendix) for the right hand side employs im-
plicit steps with respect to the first two terms and an explicit step
with respect to the third term. Compared to the dual snake model
in (Xu et al., 2012), the IMT Snake model is an improvement featur-
ing fewer parameters and a stable iteration process.

5. Experimental setup

5.1. Data acquisition

In our experiments, all the clinical images were recorded from a
Philips iE33 ultrasound system with an 11 MHz transducer in
Zhongnan Hospital of Wuhan University, China, where the clini-
cians were allowed to adjust the gain setting and filter. We manu-
ally selected 200 images from 32 patients (22 male and 10 female,
age 57 ± 20). For each image, a ROI was manually selected by
choosing a rectangle that contains arteries displaying two nearly
parallel boundaries, with IMT < 1.3 mm and without significant lo-
cal thickening. The average ROI size is 19.0 � 5.5 mm, with a pixel
spacing of 0.0665 mm. We also created a synthetic image contain-
ing two parallel boundaries with a distance of 12 pixels for effi-
ciency evaluation, wherein each side boundary was defined by a
sinusoid function. For each ROI, the two side boundaries were
manually delineated 4 times in total by 2 clinical experts, to estab-
lish the gold standard via averaging the manual contours by inter-
polation. Consistent with the quantitative metric used in most of
the related literature (Molinari et al., 2010), we defined the seg-
mentation error by the mean absolute difference (MAD) of the
interpolated curve points between the automatically generated
contour and the gold standard contour (see Fig. 8 for the segmen-
tation errors of LI, MA and IMC).

5.2. Parameter selection

The experiments were conducted on a personal computer with
an Intel Core i5-430M processor and 4 GB memory. The programs
were coded in MATLAB except for DDP, PL-DDP and LDLD, which
were coded in C++ for optimal efficiency. We employed the same
edge map from scale multiplication for all these algorithms, where

Fig. 8. The defined segmentation error (MAD) of LI, MA and IMC. The MAD of LI
(MA) is the mean of the distances between the interpolated curve points from the
gold standard contour and the automatically generated contour for the LI (MA)
boundary. The MAD of IMC is the mean of all these distances.
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r1 = 1 and r2 = 15, and the same curve evolution, the IMT Snake
model, for the refinement of their results, where the absolute value
of @f

@y ðx; yÞ was normalized to 0–1 and the sampling interval was 10
pixels. The range of IMT (0.4–1.3 mm), which was obtained
through manually measuring the clinical images, determined that
dmin = 6 and dmax = 20 for all the algorithms. For PL-DDP and LDLD,
the intra-angular constraint x2 relies on the width of the image
segment because as lmax increases, S decreases, and the angle be-
tween adjacent line segments may increase. We choose x1 = 0 to
impose parallelism and x2 ¼ p

9 to enable a relatively large range
of selection for lmax.

The parameters of the IMT Snake model were vital to the accu-
racy of the segmentation, so we trained them through minimizing
a criterion on the mean of the errors for all the interfaces. To avoid
a large time expense relating to the high dimensional parameter
space, the training process took a coarse-to-fine (2 scales) scheme
by using a step of 0.2 to locate the coarse optimal parameters
whose vicinity was searched for fine parameters with a step of
0.1. Similar to this process, the parameters of DDP j1, j2, PL-DDP
lmax, and LDLD lmax, k were trained with a step of (0.04, 0.04), 10,
and (10, 1), respectively, in both the case with snake refinement
and the case without. For LDLD, lmax, k were trained when e and
tm both took a small value in order not to miss any optimal solu-
tion. Then, e and tm were increased separately by step 0.1 until
the accuracy notably decreased. The remaining parameters were
requirements of the implementation so they were tuned heuristi-
cally as hmin = 0, hmax ¼ p

6 for PL-DDP and Dq = 1, Dh ¼ p
45, he = Dh,

for LDLD. Table 1 shows the trained optimal parameters for the
three methods, including with snake refinements and without.

6. Results

Fig. 9 shows segmentation results of these DPs for a synthetic
image. We note that all the methods produced satisfactory

contours that were close to the boundaries, especially from DDP,
PL-DDP with lmax = 10 and LDLD with lmax = 10. For PL-DDP and
LDLD, when the width of the image segment became larger, some
unsmooth joints could be generated due to the piecewise linear
representation of the boundary curve (see Fig. 9d and f). Although
this shortcoming seems unworthy for this simple task of parallel
boundary detection, in the later part of this Section, we will see
that, for unclear ultrasound artery images, piecewise linear repre-
sentation is a more robust approach.

Fig. 10 shows the segmentation results of LDLD based on the
trained optimal parameters for the typically difficult tasks in
Fig. 1. We can see that all the results were good approximations
to the boundaries through overcoming noise in the lumen, the
missing boundary of LI and the edges in the thick IMC. However,
the contours obtained from only LDLD present unsmooth joints.
Because the gold standard contours from manual delineation were
smooth curves with sub-pixel accuracy (see Fig. 1), discrete opti-
mization methods such as DP might have biased segmentation re-
sults to this problem. Nevertheless, if snake refinement was
applied on the initial results, then we could expect a more accurate
solution.

6.1. Accuracy comparison

Although DDP and PL-DDP were proposed without snake refine-
ment, we also employed snake refinement after their initial detec-
tion for a fair comparison of the accuracy among the three
methods. Table 2 shows the statistics of their segmentation errors
for cases with snake refinement and without. We found that all the
methods with snake refinement were better than their counter-
parts without refinement. This result could be explained by our
gold standard that had sub-pixel accuracy, so optimization in the
continuous space could be more appropriate. We can also note
that, when no snake refinement was applied, the PL-DDP had supe-
rior performance compared with the other two methods. This may
be attributed to the robust line representation of PL-DDP by two
endpoints. However, when snake refinement was introduced, the
proposed LDLD performed slightly better than PL-DDP and DDP.
Because snake refinement tends to compensate for inaccurate line
representation that is sufficiently close to the boundary, the fea-
ture of LDLD that allows for adjacent line segments that are con-
nected with disjoints could explain our slightly better
performance.

Table 1
Optimal parameters trained for all the clinical images.

Parameter DDP PL-DDP LDLD

j1 j2 lmax lmax k

Without snake 1.60 0.16 50 30 4
With snakea 0.68 0.12 60 60 4

a The optimal parameters for the IMT Snake model were a1 = 0.2, a2 = 0.2, l = 1.4.
b The tuned parameters e and tm for LDLD were e = 0.2, tm = 0.5.

Fig. 9. Segmentation results for an artificial image of size 400 � 100, which contains two boundaries defined by a sinusoid function. (a) Original image. (b) DDP. (c) PL-DDP
with lmax = 10. (d) PL-DDP with lmax = 50. (e) LDLD with lmax = 10, k = 4. (f) LDLD with lmax = 50, k = 4.
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The boundary points of DDP were searched in every column;
thus, we can expect it to be more accurate than the methods of

piecewise linear approximation. The inferior performance of DDP
in Table 2 could be explained by Fig. 11, which uses two examples
to illustrate the shortcoming of DDP. We can see that the optimal
parameter set failed to detect the boundary at the right end of
the left ROI because of strong edges in the adventitia (see
Fig. 11c). If we want to overcome this interference, a larger
smoothness j2 needs to be provided. However, when j2 was large
enough to guarantee a good segmentation of the left ROI (see
Fig. 11e), it failed to detect the boundary in the right ROI due to
slanting weak boundary (see Fig. 11f). Note that the two ROIs both
feature smooth boundaries, but the boundaries have different
slopes. The dilemma that the same smoothness j2 could not satisfy
them simultaneously suggests that the smoothness measure is not
rotation invariant. For piecewise linear approximation, it is not a
problem with an appropriate selection for the length of the line

Fig. 10. Segmentation results for the difficult images in Fig. 1. The left column shows the results from LDLD using lmax = 30, k = 4. The right column shows the results of the
IMT Snake model on the initial estimation of LDLD using lmax = 60, k = 4.

Table 2
Accuracy comparison among all the methods, including cases with snake refinement
and cases without.a

MAD (lm) LI (MeanSD) MA (MeanSD) IMC (MeanSD)

Without snake
DDP 60.8 ± 33.3 54.1 ± 24.3 57.5 ± 25.3
PL-DDP 55.7 ± 28.3 50.1 ± 23.6 52.9 ± 20.3
LDLD 55.2 ± 41.2 53.3 ± 23.5 54.3 ± 28.2

With snake
DDP 53.7 ± 30.4 45.7 ± 26.0 49.7 ± 24.2
PL-DDP 52.2 ± 29.7 45.6 ± 24.2 48.9 ± 21.9
LDLD 50.0 ± 23.6 45.5 ± 24.6 47.8 ± 20.6

a The number of images was 200.

Fig. 11. Two examples illustrating the inferior performance of DDP. (a) (b) Gold standard. (c) (d) DDP using j1 = 0.68, j2 = 0.12. (e) (f) DDP using j1 = 0.68, j2 = 0.6. (g) (h)
LDLD using the same set of parameters lmax = 60, k = 4. All the DP generated contours were refined by the IMT Snake model.
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segment and the rotation invariant angular constraint between
two adjacent line segments (see Fig. 11g and h).

6.2. Efficiency comparison

The efficiency comparison was conducted on clinical images
among DDP, PL-DDP and LDLD. Because they employed the same
edge map computation and snake refinement to achieve optimal
accuracy, we eliminate these two parts while only counting the
elapsed time of the two parts of DP, forward recursion and back-
ward tracing, for the efficiency comparison. Table 3 gives the total
computation time for all 200 ROIs among the three methods.
Although the theoretical complexity of LDLD is O(N), the time costs

indicate that the efficiency of LDLD was slightly inferior to DDP but
was better than PL-DDP. The less time cost of DDP could be attrib-
uted to its simple form of calculation and the lower height of the
ROIs.

Fig. 12 shows the time cost with respect to different parameters
and image sizes among the three methods. First, we can observe in
Fig. 12a that a larger lmax leads to a longer computation time for PL-
DDP but a shorter time for LDLD. This phenomenon occurs because
as lmax increases, the range of possible es�1 for computation in PL-
DDP increases quadratically while the size of the cost map of LDLD
decreases nearly linearly. Although with a small lmax, the PL-DDP
appears to have a similar time cost compared to LDLD, considering
that snake refinement is necessary for an accurate segmentation,
which gives the selection of lmax more room, we think the notably
superior efficiency of LDLD when lmax is large can be more useful in
practice. Then, we can see the efficiency comparison among the
three methods for the synthetic image in Fig. 9 with varying sizes
(here we test only square images). Note that setting lmax to be too
small or too large can bias the efficiency of LDLD or PL-DDP accord-
ing to Fig. 12a, so we chose a median value lmax = 50 for both of
them. Fig. 12b indicates that, via computing on the edge points in-
stead of the whole image plane, the speed of LDLD was faster by 2–
5 times compared with DDP and faster by 21–81 times compared
with PL-DDP on square images of sizes ranging from 100 to 1000
pixels.

Although for our clinical images, the DDP outperformed meth-
ods of piecewise linear approximation in terms of the time cost,
we note that this advantage vanished as the images became large;
moreover, it was accompanied by a large expense in memory. For
example, given the average ROI size of 286 � 83 pixels in clinical
images, our improved implementation for DDP (see Section 2;
otherwise, it would not be applicable for large images) still re-
quired at least 2.5 MB ((M � dmin)(dmax � dmin + 1)N elements in
the cost map), and this situation would become worse as the image
became large (114 MB for an image of size 1000 � 1000). In con-
trast, the memory requirement for LDLD was much smaller be-
cause only a small subset of parameters controlling line
segments needed to be stored.

6.3. Parameter analysis

Some parameters of LDLD were tuned according to the geomet-
ric characteristics of the boundary, e.g., dmin, dmax, x1, x2, while
some were trained to minimize the overall error, e.g., lmax, k. Here,
we consider other types of parameters, which were tuned heuristi-
cally as requirements of implementation. For the implementation
of CDLD, the choices of Dq and Dh control the accuracy of CDLD,
and the threshold e determines the edge points. We set Dq = 1 to
make the accuracy of the distance between two line segments to
be at the pixel-level, and we chose a large value for Dh for the sake
of efficiency because discretization error can be compensated by

Table 3
Efficiency comparison on clinical images among the three methods.

Total time (s) DDP PL-DDP LDLD

Without snake 10.4 104.8 23.0
With snake 10.4 108.7 13.2

Fig. 12. Efficiency comparison with respect to different parameters and image
sizes. (a) Total computation time on clinical images versus lmax between PL-DDP
and LDLD. (b) Computation time on synthetic images versus image sizes among the
three methods.

Table 4
Analysis of the accuracy and efficiency with respect to e.

e 0.1 0.2 0.3 0.4 0.5 0.6

Overall error (lm) 47.8 47.8 48.3 56.4 66.2 74.1
Total time (s) 16.3 12.8 10.6 9.2 7.8 6.9

Table 5
Analysis of the accuracy and efficiency with respect to tm.

tm 0.1 0.2 0.3 0.4 0.5 0.6

Overall error (lm) 47.8 47.8 47.8 47.8 47.8 48.2
Total time (s) 688.0 196.3 69.4 27.2 12.8 8.4
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snake refinement. We computed the overall error and the total
time cost with respect to different e in Table 4. It shows that,
although the overall error increased when e P 0.3, the total time
cost was quite stable when the accuracy stayed unchanged, e 6 0.2.

The DP of LDLD selects optimal line segments from thresholded
elements of the sparse matrix, which in fact contains many small
non-zero values. We can expect that the parameter for threshold-
ing, tm, has a large impact on the efficiency of the following DP.
Table 5 gives the performance of LDLD with respect to different
tm when snake refinement was used. We can see that, although
the complexity of LDLD is O(N) according to Section 3, the DP
was still quite slow when this threshold was small. It is also notice-
able that, when tm took values that were equal to or less than 1/2,
the overall error with snake refinement stayed unchanged.
Suppose that an image segment displays only one side boundary
while the other side boundary totally disappears; 1/2 could be a
threshold to consider such a situation in the DP if the maximum

of the sparse matrix is twice as large as the sum of the strengths
of the displayed side boundary.

6.4. Statistical evaluation

To evaluate the clinical applicability of the proposed methods,
we compared two commonly acknowledged parameters, the
mean and the maximal value of IMT, between LDLD with snake
refinement and the gold standard. For each pixel column, the
thickness was calculated by the vertical distance between two
contours and an estimated slope from a fitted smooth curve.
For a ROI, the mean and maximal IMT were obtained from the
thickness of all the pixel columns. We used the Bland–Altman
plot (Bland and Altman, 1986) to evaluate the difference between
the two measures. Fig. 13 shows the Bland–Altman plots, where
the differences are located in �80.6 to 55.3 lm, �162.6 to
58.9 lm for the mean and maximal IMT, respectively, within a
95% confidence interval. The larger error range of the maximal
IMT can be attributed to the large trained parameter l = 1.4 for
the uniform energy in the IMT Snake model, which obliterated
the boundary details contributing to maximal IMT. Note that, gi-
ven a small uniform energy, such details can still be maintained
in segmentation contours.

7. Discussion and conclusion

This paper attempts to solve a problem, parallel boundary
detection, which emerges in medical imaging applications such
as boundary detection on carotid arteries in ultrasound images or
the detection of spines in X-ray images. We improved the imple-
mentation of two previous methods, DDP and PL-DDP, to render
them able to solve the problem in O(NM) complexity. Then, a novel
DP based approach, LDLD with rotation invariance and approxi-
mately linear time complexity O(N), was proposed to approximate
the boundaries using piecewise linear representation. We also
embedded the LDLD into a framework for segmentation of inti-
ma-media in ultrasound images and validated the method through
comparing it with DDP and PL-DDP on a dataset of 200 ROIs. To
conclude this paper, we present some final remarks:

1. The cost function of LDLD is very similar to that of DDP and PL-
DDP. All of them attempt to find two curves that pass through
strong edges as many as possible while satisfying certain hard
constraints; however, the form of the solution is quite different
so that the edge direction can be used to reduce the computa-
tional cost. Moreover, because of the auxiliary edge directions
in our solution, the algorithm can selectively detect boundaries
of objects with desired patterns.

2. The robustness and accuracy of LDLD rely on an initial piece-
wise linear approximation and a subsequent snake refinement.
The two steps could be a requirement of difficult medical imag-
ing applications according to our experiments. The DDP may
directly detect the two side boundaries accurately through
imposing further constraints, e.g., a second order derivative,
but this could add more parameters for training, and the speed
would be hampered.

3. The proposed method is intended only for segmenting nearly
parallel boundaries, which may limit its use for plaque. How-
ever, because plaque tends to grow into irregular shapes that
are difficult to model analytically, few papers have focused on
this topic. Actually, according to Fig. 13, we included some
pathological cases with IMT > 1 mm, which may be identified
as plaque by some clinicians. Although the method in this paper
shows an improved accuracy and efficiency to some extent, it
also brings some hidden parameters for tuning. This is a

Fig. 13. Bland–Altman plots for mean (a) and maximal (b) IMT between LDLD with
snake refinement and the gold standard.
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drawback of our method, but we think it is acceptable in clinical
applications and, in practice, the selection of parameters is
somewhat robust according to Section 6.3.

4. Finally, the LDLD can be extended in several aspects, e.g., chang-
ing the linkage from the soft constraint to a hard constraint,
detecting two circular parallel boundaries via a polar transform
of the original image. Although we apply the proposed LDLD
only to intima-media segmentation in this paper, extension to
other types of boundaries with edge directions pointing to dif-
ferent sides is intrinsic.
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Appendix A. Appendix

The solution of the IMT Snake model is two functions y1(x) and
y2(x) that satisfy the coupled PDE in (25) and (26)

@y1

@t
¼ k1

@2y1

@x2 � l @
2y2

@x2 þ
@f
@y
ðx; y1Þ

@y2

@t
¼ k2

@2y2

@x2 � l @
2y1

@x2 þ
@f
@y
ðx; y2Þ

where yi(x, t) denotes the function for contour Ci (t): [1, N] � [0,
+1) ? [1, M]. The numerical scheme approximates the space deriv-
ative by the centered second difference and the time derivative by a
forward difference. For their right-hand side, the implicit difference
schemes are applied to the first two terms, and an explicit differ-
ence scheme is applied to the third term.

where yn
i;j is the jth point of yi at time n, i = 1, 2, j = 1, 2, . . ., J. For sim-

plicity, we set s = 1, h = 1. Note that non-unit s and h amount to dif-
ferent ki l below and a constant multiplier s before fy xj; yn

i;j

 �
.

Therefore, (27) and (28) become

Combining the equations from all the curve points according to
(29) and (30), we have

A1Ynþ1
1 þ BYnþ1

2 ¼ Yn
1 þ Fn

1 ð31Þ
A2Ynþ1

2 þ BYnþ1
1 ¼ Yn

2 þ Fn
2 ð32Þ

where Yn
i ¼ yn

i;1; y
n
i;2; . . . ; yn

i;J

 �T
; Fn

i ¼ fy x1; yn
i;1

 �
; fy x2; yn

i;2
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; . . . ;


fy xJ ; yn

i;J

 �
ÞT ; Ai is a tridiagonal matrix of three diagonals �ki,

(1 + 2ki), �ki, and B is another tridiagonal matrix of three diagonals
l, � 2l, l. The boundary condition yn

i;0; y
n
i;Jþ1, which is calculated by

using linear extrapolation for the centers cn
j ¼ 1

2 yn
1;j þ yn

2;j

 �
and mir-

ror reflection for the distances dn
j ¼ yn

2;j � yn
1;j (see (Xu et al., 2012)

for details), modifies the first and last elements in Fn
i according to

(29) and (30). Solving (31) and (32), we obtain the final iteration
equations

Ynþ1
1 ¼ C1Z1 � D1Z2 ð33Þ

Ynþ1
2 ¼ C2Z2 � D2Z1 ð34Þ

where

Z1 ¼ Yn
1 þ Fn

1

Z2 ¼ Yn
2 þ Fn

2

C1 ¼ A1 � BA�1
2 B

 ��1

C2 ¼ A2 � BA�1
1 B

 ��1

D1 ¼ A2B�1A1 � B
 ��1

D2 ¼ A1B�1A2 � B
 ��1
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